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Laser Wakefield Acceleration
Principle A“(IT

» high-power laser pulse travels
through underdense plasma

» ponderomotive force causes
plasma wake, most effectively
with LLP = )\p

» longitudinal wake:

Ez = Emaxsin (wp(z/vp — t))

4rtenyc
Emax < Eg i = ———,
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E. Esarey et al., IEEE Trans.Plas.Sci.24 (1996) W|th no — amb|ent 67 denS|ty
Figure: Linear plasma wake, single particle > g ~ 1018 Cmf?’,

orbits in phase space of injected electrons Ey ~100GV/m
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LWFA Wave-Breaking Regime AT
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Non-linear regime

Ve = Vp : Emax — Ews
Ewp = 2('Yp -1)E

non-relativistic wavebreaking limit:
=- wavebreaking, self-injection

110

5108 |/
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A.Pukhov,J.Meyer-ter-Vehn, Appl.Phys.B74 (2002) b

Figure: Electron density (PIC-simulation) Figure: Electron energy spectrum @
¢t/ — {350,450, ..., 850}
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LWFA experimental setups A
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Figure: Schematic LWFA setup with Figure: Cross section of a capillary, magnified:
supersonic gas jet, nozzle (»2 mm) gas flow in steady state, gas-pressure profile
during shot, gas density profile along central channel axis
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LWFA measured electron spectra A\ ¢
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J. Osterhoff et al., PRL 101 (2008)

Figure: False-color images of 40 consecutive, spacially dispersed electron beams on
S2 (cf. last slide)
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LWFA-Driven Light Sources AT
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TT-FELs

» Today’s LWFAs provide end
energies of 0.1...1 GeV.

» Tempting idea: table-top X-ray
FELs could become feasible
with short-period undulators.

» Possible solution: Nb3Sn
SCUs

4000

3000

Charge (4C M)

2000

O]
Elecron energy (Mel)

Number of potons/0.19% bandcth

1,000

Table: TT-FEL-SCU target parameters
(Grlner et al., Appl. Phys. B 86)

Ay [mm] 5
H.-P. Schlenvoigt et al., nature physics 4 (2008) g [mm] 1 3

Figure: Schematic setup of a LWFA-driven K 1
undulator light source, measured photon By [T] 2.1
spectra @ E, = 64 MeV and 58 MeV Lsat (VUV) [m] 0.8
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Which needs do the undulators have to be\Q("'
tailored to?

» photon energy in X-ray range = very short periods
(~5mm,K ~ 1)

» (low) pointing stability = large apertures preferred
» large energy spread =—> compensation schemes?
» heat load: probably not an issue
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Options for (very) short period undulators QT

» Maintaining K for shorter periods requires increasing the field
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Options for (very) short period undulators QT

v

Maintaining K for shorter periods requires increasing the field
The field tends to decrease with decreasing period length
— extreme requirements on field sources
» Permanent magnets:

» extremely high remanent and coercive field required

» cryogenic PMUs
Superconductive undulators

» extremely high current densities required
» Nb3Sn (low field instabilities have to be overcome)
» HTSC @ 4K (not yet outperforming Nb-Ti)

v

v
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Options for (very) short period undulators QT
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Nb-Ti .46 x.72mm?> —+—
4.5 | NbgSn O =.8mm unstable (CERN) —x—

' NbsSn 00 =.4mm stable —x—
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Figure: Simulated on-axis field as a function of period length for different particular sc
wires @ 1.3 mm gap, 80%J. and optimised winding configurations, as compared to a
PMU. The indicated cross sections refer to the bare wire.
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Nbs;Sn-Undulator for LMU Munich AT

Development steps

Despite of the low field instablities, Nb3Sn involves mechanical
challenges (heat treatment, brittleness).
1. transfer CERN/CLIC DW technique to short periods (2-period
short model)

» test and optimise heat treatment and mechanical stability
» but: Nb-Ti will not be outperformed in this first step
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Nbs;Sn-Undulator for LMU Munich AT

Development steps

Despite of the low field instablities, Nb3Sn involves mechanical
challenges (heat treatment, brittleness).
1. transfer CERN/CLIC DW technique to short periods (2-period
short model)
» test and optimise heat treatment and mechanical stability
» but: Nb-Ti will not be outperformed in this first step
2. reduce low-field instabilities (performance tests on 2-period short
models with different wires)
» reduce wire and filament diameter
» use process and heat treatment optimised for low fields (e.g. PiT)
3. construction and characterisation of 10-period short model using
the optimum wire/process
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Nbs;Sn-Undulator for LMU Munich A\ ¢
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Nbs;Sn-Undulator for LMU Munich

Design approach

Use NbsSn wire tested for CLIC
damping wigglers:

diameter 0.8mm
SC/Cu ratio 1.13
# filaments 60

filament diam. 80 um

4

. Field on axis for gap = 1.2 mm
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Relative field on axis
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Conclusion

Optimum period length
» 4 mm for 1 wire per layer
» 5.4 mm for 2 wires per layer
» 7mm for 3 wires per layer
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How to reduce the photon energy spread AT
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Focusing
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M. Fuchs et al., nature physics 5 (2009)
Figure: e-beam divergence after quad Figure: photon spectrum (0. and 1.
doublet for different energies, effective diffraction order of grating). Ee = 207 MeV,
electron spectrum width “reduced Afund. = 17nm
bandwidth”

17 Diagnostic Light Sources: Non-planar Undulators for Energy Spread Compensation



» Focusing rather hides than reduces the energy spread

» Diagnostic applications of undulator radiation relying
on its monochromaticity require a different approach
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Example: Emittance Measurement AT
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UNDULATOR  MONOCHROMATOR  pi\ior g YAG SCREEN
(I I
o I | [ Figure: Possible setup for
CAMERA -~ simultanous beam size and
YAG SCREEN divergence measurements at
QCAMERA SR sources

B.X. Yang, A.H.Lumpkin, PAC 1999

Measured (effective)

monochromatic divergence > Zm, Zw, Zs dist. of
5 5 o 5 5 5 monochromator, beam waist,
Z5 Oy et = (Zm — 2w ) 03 + 25,05 + 0o pinhole from undulator centre,

> 0x0, Oxo, Po beam size,
divergence, and beta function
2 o at beam waist, resp.,
ﬁ%”f) , » o7, 0y diffraction limited

Oxeff = %0 ' '
3/0(25 — Zy)2 + 0822 + 02, ¥ source size and divergence.

Imaged beam size:

2 <a§,0 bo2 i
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Problem at LWFAs: The diffraction limited source size and
divergence

or =4/ (AL) /4, 0. =VA/L

are not well defined due to the large energy spread !
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Energy Spread Compensation: AT
Non-Planar SCUs

Concept TP ——
17.42
» disperse beam by chicane a4l
» match laterally varying field - el 5
strength to electron energy: : waaf 1%
w 17.32 - E
)\u K2 (X) 17.3 |
A= 1+ = const. 1728 |
2’)/2()() < 2 17.26
17.24

| | | | |
0.48 0.49 0.5 0.51 0.52
E [GeV]

Example case

» cylindrical scu with

Iyt = 13 mm
» Ay = 10mm, hgap = 1mm
> Ee =500MeV, & =20%
Gourtesy Peer Peiffer » bandwidth reduced by 1 OM
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Cyl. SCU: Trajectory Correction AT
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Figure: Trajectory through the cylindrical
undulator for the two extremal energies
(shifted to x = 0) without and with
sextupole correction field applied
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Transverse Drift

» non-planar undulator half
periods deflect the beam
differently strong

» excentric sextupole correction
field required:

Bycorr(X) = g(x + €)% + d
» example case:
d=-05mT
T

e=—-35mm
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Non-planar SCUs: Agenda AT

3-year BMBF-funded joint project with University of Jena

» Theory and simulation tools
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» Theory and simulation tools

» particle tracking through non-planar undulators: extension to
particle ensembles distributed in phase space, undulators of finite
length (matching) and finite mechanical tolerances
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Non-planar SCUs: Agenda

3-year BMBF-funded joint project with University of Jena

» Theory and simulation tools

» particle tracking through non-planar undulators: extension to
particle ensembles distributed in phase space, undulators of finite
length (matching) and finite mechanical tolerances

» simulation of non-planar undulator radiation (far- and nearfield)

» elaboration of emittance measurement method (incl. appropriate
beam optics)

» radiation-particle interaction in non-planar undulators

» Construction and test of a cylindrical SCU
» first measurements at JETI 9/2012
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Conclusions AT

» Laser wakefield accelerators in combination with short period
superconductive undulators might open a path to compact X-ray
undulator radiation sources and in far future even to table-top
X-FELs.

» Very short periods require very large current densities and
therefore sc materials beyond standard Nb-Ti technology

» Non-planar undulator geometries are an option for compensating
the large energy spread of laser wakefield accelerators, thus
making undulator radiation-based diagnostics for wakefield
accelerators feasible

» A project of theoretically validating and expermentally testing and
applying this concept is under way
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