

Instrumentation for Local and Integral Magnetic Field Measurements of Superconducting Undulator Coils

Institute for Synchrotron Radiation (ISS)

Andreas Grau

for

T. Baumbach¹, S. Casalbuoni¹, S. Gerstl¹, M. Hagelstein¹, D. Saez de Jauregui¹, C. Boffo², W. Walter²

¹Karlsruhe Institute of Technology, Karlsruhe, Germany ²Babcock Noell GmbH, Würzburg, Germany

Outline

1. Introduction

- Motivation
- Magnetic field errors

2. CASPER measurement setups

- Cryostat Design
- Local field measurement setup
- Accuracy requirements and setup limits
- Additional components
- Setup for field integrals
- Quench diagnostics

3. Next steps

Motivation

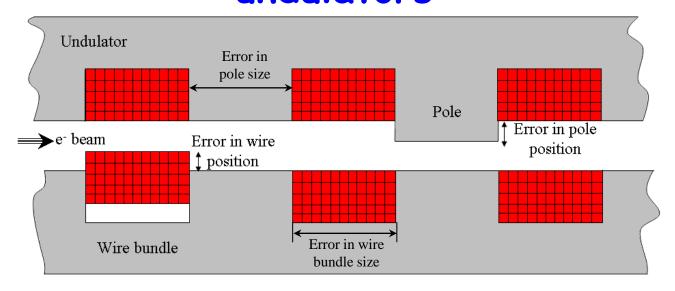
Task within our R&D program:

Improvement and quality assessment of magnetic field properties.

Magnetic errors can cause:

Perturbation of the closed orbit and the dynamics of the electron beam

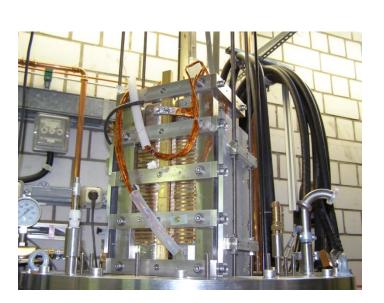
→ Measure field integrals


Reduction of the quality of the emitted radiation

▶ Local field measurements to obtain phase error

Main errors in superconducting undulators

Field errors are mainly caused by:

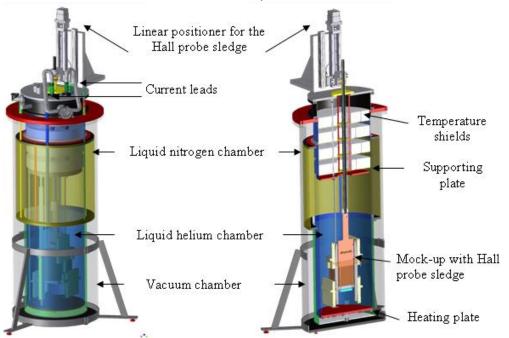

- mechanical deviations of the pole position e.g. the pole height
- bending of the yoke
- the position of the superconducting wire bundles
- pole and wire bundle size


CASPER -

Characterization Setup for Field Error Reduction

CASPER I — Measurement facility for short undulator mock-up coils

CASPER II - A measurement setup for undulator coils up to 1.8m length



CASPER I

To test:

- New winding schemes
- New superconducting materials and wires
- New field correction techniques

- Operating vertical
- Test of mock-up coils in LHe
- Maximum dimensions 35cm in length and 35 cm in diameter.
- The magnetic field along the beam axis is measured by Hall probes fixed to a sledge moved by a linear stage with the following precision $\Delta B < 1mT$ and $\Delta z < 3 \mu m$.

CASPER II - Cryostat

The goal...

Test superconductor performance and measure magnetic field distributions and field integrals of superconducting coils with dimensions like in "real" IDs (e.g. up to ~1,8 m length, ~50cm diameter)

Cryostat overview

Horizontal configuration (in vacuum)

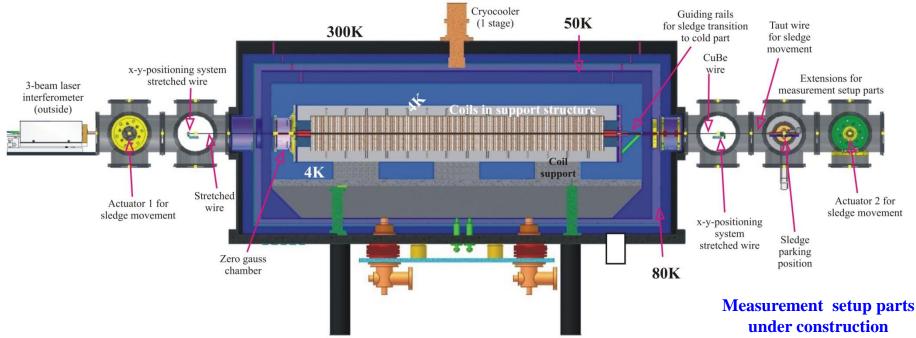
• Temperature shields to reduce thermal load

- Partially cryogen free :
 - → To 4K via cryocooler
 - precooling 4K plate and thermal shields (80K) with liquid N_2

Cryocooler 50K (1 stage) 300K Baffles for radiation shielding measurement devices Flange to install parts of the measurement setups support 80K Feedthroughs Heat-Heaters temperature exchangers Turbopump pressure Current gauge etc. Cryocooler GRPleads (2 stages) brackets

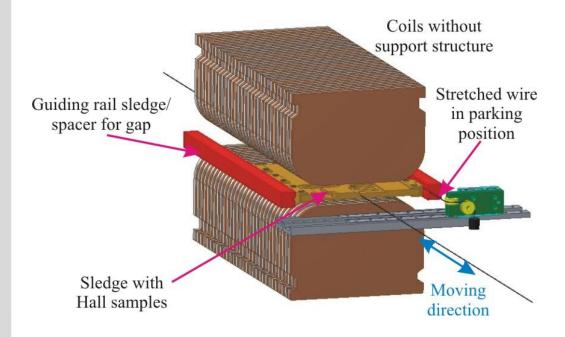
> **Built by CryoVac Delivery October 2010**

- Dimensions 4K region $2m \times 0.5m \times 0.5m$
- \bullet Current leads 8 \times 500A, can be variable connected
- Local and integral field measurements possible, access through the flanges

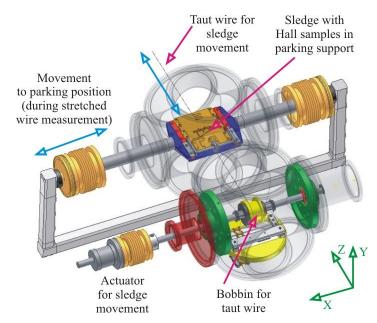

Flange to install

and interferometer

Field measurement setup

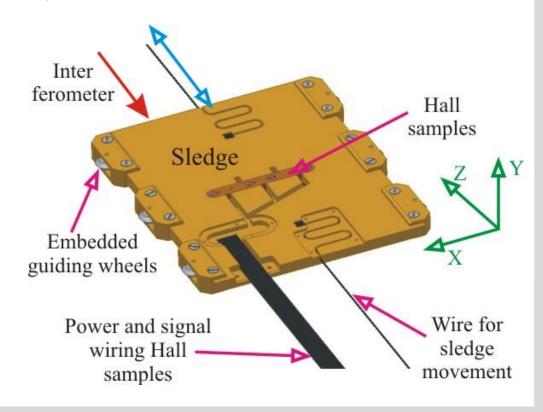


- Local field measurements via Hall samples on a sledge
- Position (z-direction) measurement with laser interferometer
- Zero Gauss chamber for zero check of Hall sample calibration (possible after every thermal cycle)
- possibly in addition 2 Helmholtz coils for linearity check of Hall sample calibration (not shown)
- Integral field measurements with stretched wire technique (CuBe wire Ø125 μ m)
- Position adjustment for stretched wire in x-y-direction via linear stages with encoders


Local field measurements

Measurements with 3 Hall probes in a row placed perpendicular to beam axis (20mm distance)

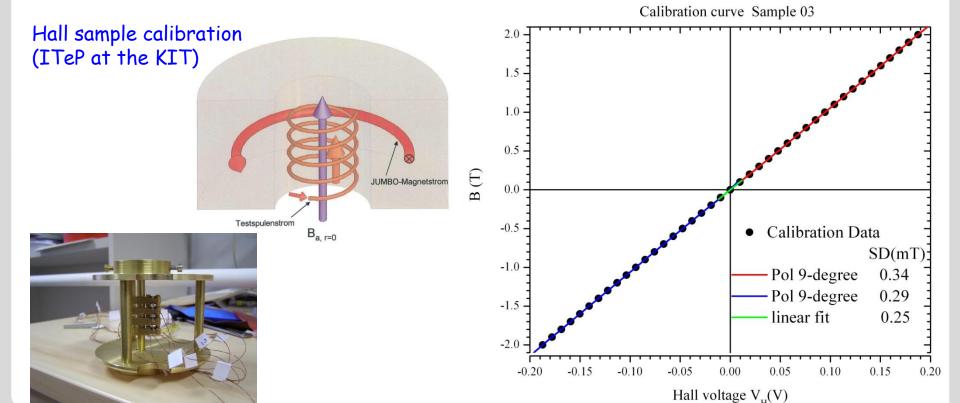
Sledge movement by a taut wire for each direction spooled on a bobbin at each side mounted in the extensions of the cryostat


Field measurement equipment

- Field sensors: 3 calibrated Hall probes
- Hall current provided by a Keithley precision current source
- Hall voltage measured with a Keithley multichannel voltmeter

3 beam laser interferometer for position measurement (SIOS)

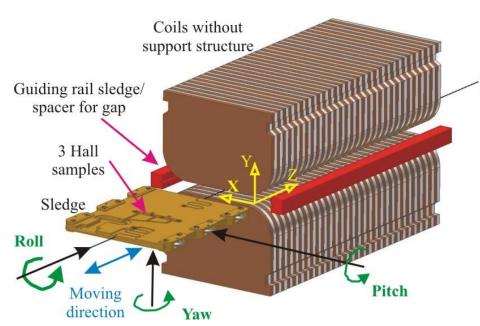
- → Precise z-position
- Values for angle deviation during moving



Measurement accuracy

Which main errors effect the local field measurements?

- 1. Errors caused by Hall sample calibration
- 2. Field errors mainly due to mechanical misalignment of the guiding rails or the field sensors


Accuracy requirements

Mechanical requirements to reach measurement accuracy for phase error

 $\Delta \phi$ = 1° (Λ_U =15mm, K=1.1, ANKA SCU 15):

Parameter	Calculated value [1]	Set limit
Horizontal deviation (Δx)	500 µm	300 µm
Vertical deviation (Δy)	200 µm	50 µm
Horizontal deviation (Δz)	13 µm	3 µm
Roll angle error (α)	2.5 mrad	1 mrad
Pitch angle error (β)	83 mrad	30 mrad
Yaw angle error (χ)	500 µrad	300 µrad

[1] Zachary Wolf, "Requirements for the LCLS Undulator magnetic measurement bench", Technical report # LCLS-TN-0, 4-8 http://www-ssrl.slac.stanford.edu/lcls/technotes

(A.Grau et al., ASC 2010, Washington)

Setup limits

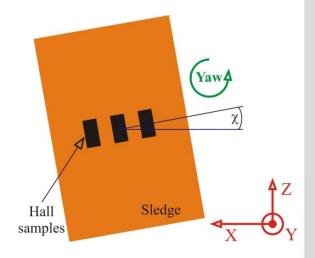
Relative alignment precision of guiding rails $\Delta y_{Guiding rail}$ =40 μ m. For the Hall probe in the middle the distance to coils changes by Δy =20 μ m.

- In x-direction the field is fairly uniform \Rightarrow error is negligible
- $\Delta y = 20 \mu m$ in y-direction fulfills the requirements
- In longitidnal direction precision for $\Delta z = 1 \mu m$

Roll

According to the drawing with x_{sledge} =0.15m the maximum roll angle α =266 μ rad

below the limit


Yaw

The yaw angle $\chi=270\mu rad$ results from taking into account a maximum misalignment of the guiding rails with respect to the coils of 0.2mm along the whole support structure length of 1.8m (z-axis)

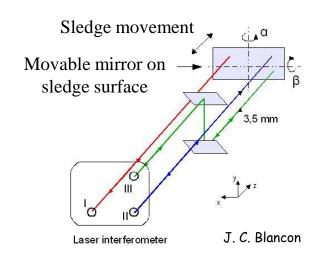
→ set limit fulfilled

Pitch

Due to guiding rail precision the limit for pitch angle $\beta=30$ mrad (rotation around x-axis) is not a critical point

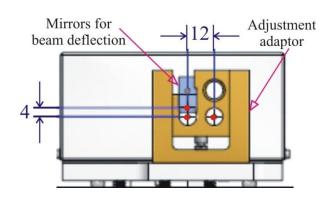
A.G

Position measurement

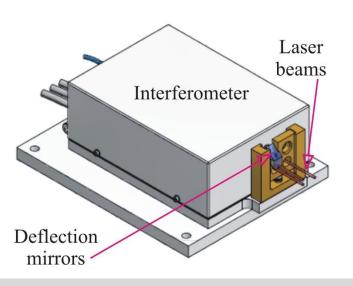


Laser interferometer (3 beams)

- Z-positioning (1 beam)
- Angle deviation during moving (3 beams)


Problem: Beam distance 12mm, usable gap in the Undulator max. 7mm

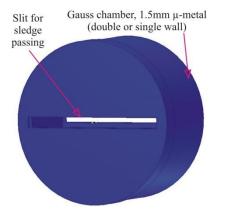
preliminary test and setup to reduce vertical beam distance

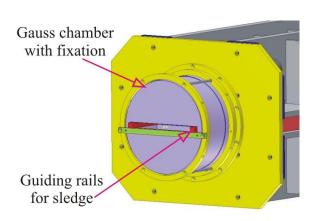


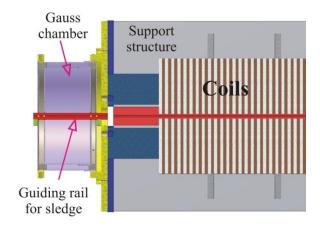
Final Device:

Commercial interferometer with attachment of two mirrors for beam distance rescaling

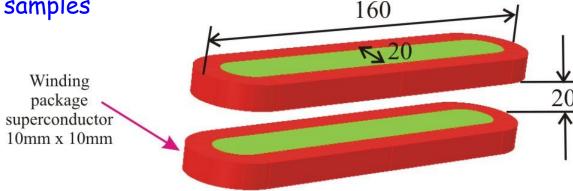
Company SIOS






Supplementary

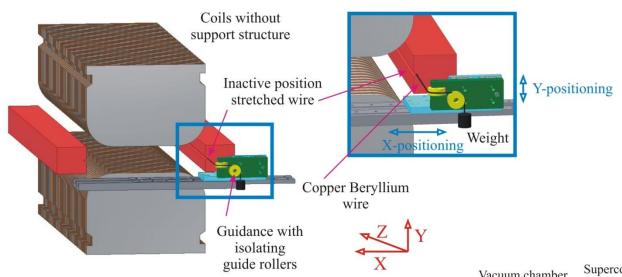
Field shielding chamber to adjust the zero-point of Hall samples when cold

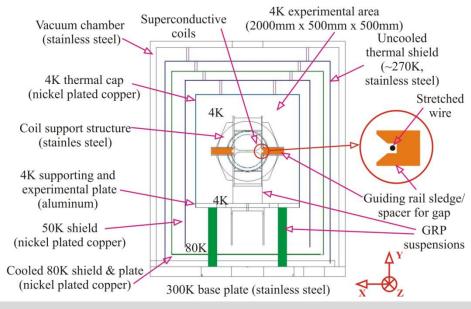

Company Sekels

Racetrack coils mounted in Helmholtz configuration to check calibration curve of the Hall samples

Field homogeneity over 40mm in the center ~0.2mT

⇒ Can be improved (in design stage)


Winding at ITeP at KIT

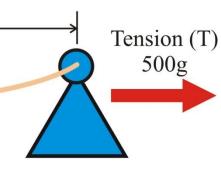

Stretched wire

Integral field measurements with stretched wire

- Copper Beryllium wire
- Diameter 125μm
- Length through the whole cryostat ~2.5m
- Position adjustment via linear stages with encoders
- movable along 2 axes (150mm x-axis, 20mm y-axis) synchroneous or opposite directions

Error consideration

Accuracy limit is set by the sag Δy in the middle (1/2) of the wire and depends on the tension and the self-weigth [1]


With

$$\varnothing_{CuBe}$$
 = 125 µm ω_{CuBe} = 0.064g/m Λ_U = 0.015m

_____ Δy[1/2]

CuBe wire
125μm diameter

$$\Delta y \left(\frac{l}{2}\right) \cong -\frac{\omega_{CuBe} l^2}{8T} = -100 \,\mu m$$

A.Grau et al., ASC 2010, Washington

Resulting Error in the field integral [2]

$$\frac{\Delta I_{y}}{I_{y}} \approx \frac{1}{2} \left(\frac{2\pi}{\lambda_{U}}\right)^{2} \cosh\left(\frac{2\pi}{\lambda_{U}}\Delta y\right) \Delta y \approx 8.8 \times 10^{-4}.$$

- [1] G. Bowden "stretched wire mechanics," Technical report, #SLAC-Pub-11465, Stanford Linear Accelerator Center, 2004
- [2] F. Ciocci et. Al. "some considerations on the SPARC undulator magnetic measurements," Technical report #SPARC-FEL-06/001, ENEA Frascati, 2006

Quench diagnostics

Quench detection

- 6 quench detectors to protect superconducting wire during training an quench tests
- sampling rate 100 kS/s
- adjustable parameters: pre- and post-trigger time, quench limit voltage, quench time, voltage offset between compared coil parts, etc.
- software controlled
- suitable for individual connection to all coil parts
- manufactured by IPE at KIT

Quench diagnostics

- Data acquisition system up to 64 channels
- 8 x 8 channel simultaneous sampling multifunction cards
- Sampling rate 250 kS/s
- pre- and post-trigger time variable up to 5s
- data processing for quench analysis via Labview (IPE)

CASPER II status

Done:

- Final drawings and calculations
- Recipient is built, Temperature shields are fabricated and assembled
- Cooling components like cryocoolers, heat exchanger are present at the company, pumping units are bought and delivered
- Temperature sensors and controllers are delivered
- Other "hardware" components are machined and ready for assembling (flanges, cryostat base structure, LN2 connections etc.)
- Vacuum parts for measurement setup are ordered

To do:

- Complete assembling, wiring, factory acceptance test and final acceptance at ISS
- ~50% construction of measurement setup parts (N. Glamann) and complete assembling
- Purchasing of parts for stretched wire measurement setup (linear stages and encoders)
- Special adapted interferometer will be procured soon
- Procurement of Keithley current sources, voltmeters and additional power supply
- Quench detection and diagnostic system is in the ordering stage (from IPE at KIT and NI)

Acceptance Test

Check specific values like :

- Functionality of all mechanical and electrical parts, pumps, pressure gauges and temperature sensors
- Pumping time to start Turbo pump (p = 0.5mbar, time = 1h)
- Time to reach base pressure of 10^{-4} mbar for cooling start (time = 2h)
- Pumping to working pressure < 10⁻⁵mbar (time = 12h)
- Check for leaks
- Nitrogen preecooling of the "4k" plate (T~80K)
- Nitrogen cooling of the "80k" plate (T~85K)
- Temperature "80K" shield (~120K, cooled by a one stage cryocooler)
- Temperature "50K" shield (T~45K, cooled by the first stage of the cryocoolers)
- Cooling of "4K" region (T=4K, at sensor in the middle of the 4K plate)
- Over all cooling time 60h
- Warm up time 30h

Acknowledgements

Thanks to:

N. Glamann

D. Erbe

E. Mashkina

N. Vassiljev

ITeP IPE

Fa. Cryo Vac SIOS National Instruments Institute for Synchrotron Radiation (ANKA)
Karlsruhe Institute of Technology

University of Erlangen - Nürnberg

Karlsruhe Institute of Technology

... and to you for your attention!

For sure we get nice results

