

Recent results on passive field error correction in superconductive undulators

Sandra Ehlers, Axel Bernhard, Florian Burkart, Alexander Keilmann, Peter Peiffer, Robert Rossmanith, Tilo Baumbach

Laboratory for Applications of Synchrotron Radiation (LAS) Karlsruhe Institute of Technology (KIT)

1. Field drifts in SCUs

- identification of sources

2. Induction shimming

- recent measurements
- outlook

Identifying field drifts in SCUs

- Background
 - ► Observed in orbit position measurements at ANKA [PAC09]
 - Temporally decaying undulator field from seconds to hours
 - Dependence on ramp rate and cycling history
 - ► Hypothesis: Yoke eddy currents, wire dynamics (flux creep etc)
- Recent experiments: Local Hall probe measurements on short models
- RL network model

Short models for field drift measurements

Table: Parameters of the two short models

	CERN-SCW	KIT-SCU
geometry:	vert. racetrack	
straight [mm]	100	60
radius [mm]	50	30
period length [mm]	40	15
# full periods	1	13
wire:	NbTi multifilament, rect.	
dim's (insulated) [mm ²]	1.25×0.73	0.77×0.51
Cu:Sc-ratio	1.71	1.32
twist pitch [mm]	18	25
RRR Cu-matrix	> 100	> 65
experimental conditions		
operation current [A]	730	500
ramp rate [A/min]	84	150
max. field @ conductor [T]	3.3	2.3
field grad. along wire [T/m]	1.3	3.0

Experimental results

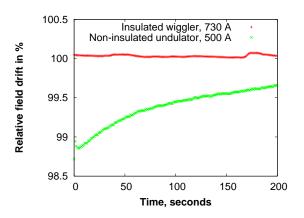
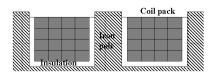
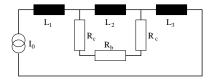




Figure: Field drifts after ramp from a wiggler short-version and from a short undulator half, relative to the measured value 430 s after ramping.

RL network model

Stored energy ⇒ *Inductance*

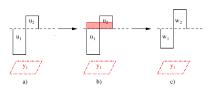
$$\mathit{L}_{2} = 2 \frac{\int_{\mathit{V}} \mathbf{H} \cdot \mathbf{B} \, \mathit{dV}}{\mathit{I}_{0}^{2}} \Rightarrow$$

 $L_{21} = 4.7 \,\mathrm{mH},\, L_{22} = 0.33 \,\mathrm{mH}$

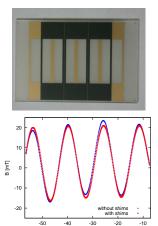
$$\tau = \frac{L_2}{2R_c + R_b}.$$

From measurements:

$$\tau_1 = 460 \pm 20\,\mathrm{s},\, \tau_2 = 32 \pm 1\,\mathrm{s}$$


Summary - Field drifts

- ▶ Leak currents largest sources to drift → insulation motivated
- Yoke eddy currents two orders of magnitude smaller
- Wire dynamics probably negligible


Inductive Shimming

Basic Idea

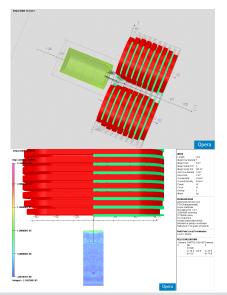
- Closed sc loops covering each period
- ► Field integral ≠ 0 corrected by induced current
- Overlap: coupling and global correction

z [mm]

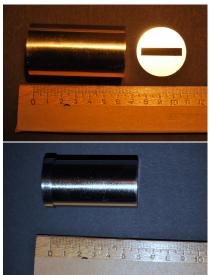
Aims of next experimental steps

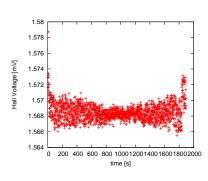
- Quantitative analysis of phase error reduction
- Investigation of hystereses and long term stability
- Investigation of coupling and alternative schemes

Induction shimming measurements



- Measurement setup
 - ► Zero-Gauss-Chamber
 - Shim system
- Results
 - Field maps
 - ► Hysteresis


Setup: Zero-Gauss-Chamber, Simulations


- Screening of stray fields
- Cryo-compatible highly permable material CRYOPERM10
- ► $B_{\rm res} < 10^{-4} \, {\rm T}$

Zero-Gauss-Chamber: Test

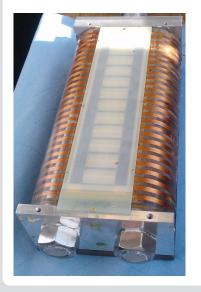
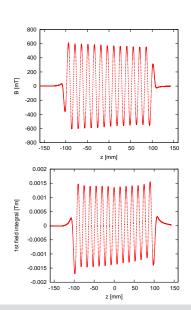
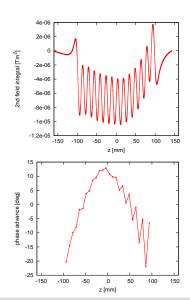

Realisation and

Figure: Hall probe signal in zero-gauss-chamber during quench training

Shim system

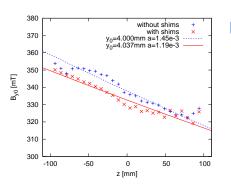
Table: Undine 1, basic parameters


period length [mm]	15
# full periods	13
matching coils	2 (1/4;3/4)
conductor	NbTi multiflmt.
	$0.77 \times 0.51 \text{ mm}^2$

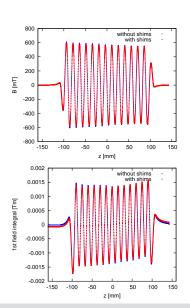

Table: Shim loops YBCO, sputtered, structured with wet chemical process

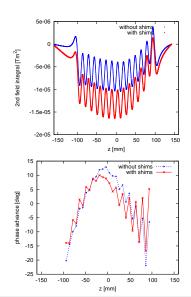
substrate	Al_2O_3 , 0.5 mm
loops	YBCO, 300 nm
coating	Au, 200 nm
period	15 mm
# loops	12
circuit path	
- broad	10 mm
- narrow	1 mm

Undine 1: field maps



Systematic Error due to Adjustment




Model:

$$ilde{B}_y = ilde{B}_0(\cosh ky(z) - \sinh ky(z)) \ y(z) = y_0 + az \ k = rac{2\pi}{\lambda_u}$$

Integrals and Phases, 500A

Saturation and Hysteresis

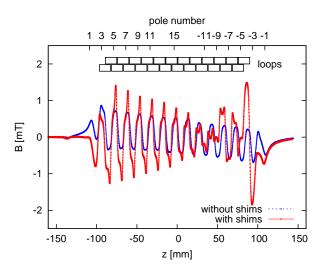


Figure: Field due to persistent currents in shims after operation at 50 A

Reason: Field Amplitude Overshoots at Poles 4,-4

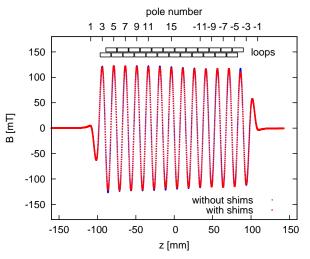


Figure: Field maps at 50 A

Persistent Currents and Coupling

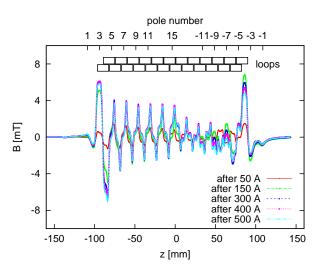
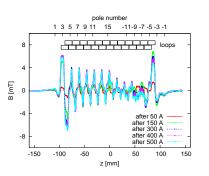
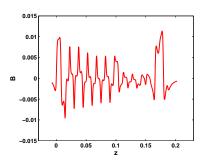




Figure: Field due to persistent currents in shims after operation at different currents

Persistent Currents and Coupling

► Biot-Savart approximation using current array: [-100 140 -140 120 -140 115 -115 110 -100 100 -100 90 -90 40 -40 30 -30 25 -25 0 -40 10 -150 -20]

Summary - Induction shimming

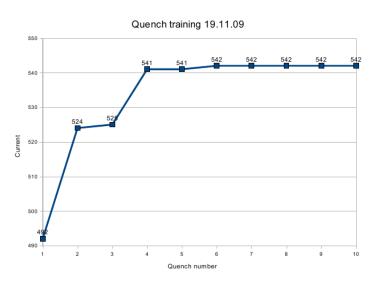
- Undulator short model and zero-gauss-chamber successfully tested
- Alignment to be improved by at least one order of magnitude both in terms of accuracy and reproducibility (under way)
- Shim system must cover only poles 5..-5 (shortening and symmetrisation in preparation)

Next steps

- Quantitative analysis of systematic errors
- Experiment with two coils and abovementioned modifications
- Further technical development:
 - Thinner substrates
 - ► Extension to ~100 periods

Acknowledgements

► CERN


- ▶ R. Maccaferri
- M. Karppinen
- Y. Papaphilippou
- ▶ J. Mazet
- ► J.-C. Perez & team
- ► S. Clement
- D. Schoerling
- D. Wollmann

Univ. Erlangen

- M. Weisser
- ► H. Lang
- ► KIT
 - D. Erbe
 - ► S. Gerstl
 - A. Grau

Undine 1: Quench test

