Investigation of Coherent X-ray Propagation and Diffraction

Mark Sutton
McGill University

Collaborator

• Zhenxing Feng, now at Northwestern

- 1. Introduction
- 2. Mutual Coherence
- 3. ABCD Optics
- 4. Propagation of Coherence
- 5. Measurement of Coherence
- 6. Conclusion

Spectroscopy

$$I(\mathbf{\omega}) = |E(\mathbf{\omega})|^{2}$$

$$= \frac{1}{4\pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E^{*}(t)E(t')e^{i\mathbf{\omega}(t-t')}dtdt'$$

$$= \frac{1}{4\pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E^{*}(t)E(t+\tau)e^{i\mathbf{\omega}\tau}dtd\tau$$

Wiener-Khinchin theorem

$$I(\mathbf{\omega}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \langle E^*(t)E(t+\tau) \rangle e^{i\mathbf{\omega}\tau} d\tau$$

Correlation functions

One conventionally normalizes

$$g^{(1)}(\tau) = \frac{\langle E^*(t)E(t+\tau)\rangle}{\langle E^*(t)E(t)\rangle}$$

More generally:

$$g^{(1)}(\vec{\delta r}, \tau) = \frac{\langle E^*(\vec{r} + \vec{\delta r}, t + \tau) E(\vec{r}, t) \rangle}{\langle E^*(\vec{r}, t) E(\vec{r}, t) \rangle}$$

And its spatial Fourier transform is what matters for diffraction.

More correlations

Can also define a higher order correlation function:

$$g^{(2)}(\tau) = \frac{\langle I(Q,t)I(Q,t+\tau)\rangle}{\langle I(Q,t)\rangle^2}$$
$$= \frac{\langle E^*(t)E(t)E^*(t+\tau)E(t+\tau)\rangle}{\langle E^*(t)E(t)\rangle^2}$$

And *often* this is (Gaussian statistics):

$$g^{(2)}(\tau) = 1 + |g^{(1)}(\tau)|^2$$

Mutual Coherence Function

Define

$$\Gamma(\vec{r}_1,\vec{r}_2,t_1,t_2) = \langle E^*(\vec{r}_1,t_1)E(\vec{r}_2,t_2) \rangle.$$

where $\vec{E}(\vec{r},t)$ is the electric field. Also define

$$W(\vec{r}_1,\vec{r}_2,\mathbf{v}) = \int_{-\infty}^{\infty} \Gamma(\vec{r}_1,\vec{r}_2,\mathbf{\tau}) e^{2\pi i \mathbf{v} \mathbf{\tau}} d\mathbf{\tau}$$

and it's normalized form:

$$\mu(\vec{r}_1, \vec{r}_2, \mathbf{v}) = \frac{W(\vec{r}_1, \vec{r}_2, \mathbf{v})}{W(\vec{r}_1, \vec{r}_1, \mathbf{v})^{1/2}W(\vec{r}_2, \vec{r}_2, \mathbf{v})^{1/2}}.$$

Finally:

$$\langle E^*(\vec{r}_1, \mathbf{v}_1) E(\vec{r}_2, \mathbf{v}_2) \rangle = W(\vec{r}_1, \vec{r}_2, \mathbf{v}_1) \delta(\mathbf{v}_1 - \mathbf{v}_2).$$

Reference: Coherent X-ray Diffraction, Mark Sutton

Third-Generation Hard X-ray Synchrotron Radiation Sources,

Ed. D. M. Mills, Wiley (2002).

Why Coherence?

Coherence allows one to measure the dynamics of a material (X-ray Photon Correlation Spectroscopy, XPCS).

$$\langle I(\vec{Q},t)I(\vec{Q}+\delta\vec{\kappa},t+\tau)\rangle = \langle I(Q)\rangle^2 + \beta(\vec{\kappa})\frac{r_0^4}{R^4}V^2I_0^2\left|S(\vec{Q},t)\right|^2$$

where the coherence part is:

$$\beta(\vec{\kappa}) = \frac{1}{V^2 I_0^2} \int_V \int_V e^{i\vec{\kappa} \cdot (\vec{r}_2 - \vec{r}_1)} \left| \Gamma(\vec{0}, \vec{r}_2^{\perp} - \vec{r}_1^{\perp}, \frac{\vec{Q} \cdot (\vec{r}_2 - \vec{r}_1)}{\omega_0}) \right|^2 d\vec{r}_1 d\vec{r}_2$$

and $\beta(\vec{0}) \approx \frac{V_{coherence}}{V_{scattering}}$ with widths $\lambda/V^{\frac{1}{3}}$

Reference: M. Sutton, Coherent X-ray Diffraction, in Third-Generation Hard X-ray

Synchrotron Radiation Sources: Source Properties, Optics, and Experimental

Techniques, edited by. Dennis M. Mills, John Wiley and Sons, Inc, New York, (2002).

Coherent diffraction

(001) Cu₃Au peak

Sutton et al., The Observation of Speckle by Diffraction with Coherent X-rays, Nature, **352**, 608-610 (1991).

- 1. Introduction
- 2. Mutual Coherence
- 3. ABCD Optics
- 4. Propagation of Coherence
- 5. Measurement of Coherence
- 6. Conclusion

Gaussian Schell Model

Assume:

$$\Gamma(\mathbf{r}_1, \mathbf{r}_2, t_1, t_2) = I(\mathbf{r}_1, t_1)^{\frac{1}{2}} (I(\mathbf{r}_2, t_2)^{\frac{1}{2}} \mu(\mathbf{r}_1 - \mathbf{r}_2, t_2 - t_1)$$

Since $\mu(0) = 1$, we see that $\Gamma(\mathbf{r}, \mathbf{r}, t, t) = I(\mathbf{r}, t)$

Assume profiles are Gaussian (Simplifying to one dimension)

$$I(x) = \frac{I_0}{\sqrt{2\pi}\sigma_s}e^{-\frac{x^2}{2\sigma_s^2}}$$

and

$$\mu(x_2 - x_1) = e^{-\frac{(x_2 - x_1)^2}{2\rho_c^2}}.$$

Gaussian Schell Model

Writing the mutual coherence as a function of $r_1 + r_2$ and $\mathbf{r}_2 - \mathbf{r}_1$ gives

$$\Gamma(x_{1}, x_{2}) = \frac{I_{0}}{\sqrt{2\pi}\sigma_{s}} e^{-\frac{x_{1}^{2}}{4\sigma_{s}^{2}}} e^{-\frac{x_{2}^{2}}{4\sigma_{s}^{2}}} e^{-\frac{(x_{2}-x_{1})^{2}}{2\rho_{c}^{2}}}$$

$$= \frac{I_{0}}{\sqrt{2\pi}\sigma_{s}} e^{-\frac{(x_{1}+x_{2})^{2}}{8\sigma_{s}^{2}}} e^{-(x_{2}-x_{1})^{2}\left(\frac{1}{2\rho_{c}^{2}} + \frac{1}{8\sigma_{s}^{2}}\right)}$$

$$= \frac{I_{0}}{\sqrt{2\pi}\sigma_{s}} e^{-\frac{(x_{1}+x_{2})^{2}}{8\sigma_{s}^{2}}} e^{-\frac{(x_{2}-x_{1})^{2}}{2\delta_{a}^{2}}}$$

defining

$$\frac{1}{\delta_a^2} = \frac{1}{\rho_c^2} + \frac{1}{4\sigma_s^2}$$

Brightness

Conventionally brightness has the form:

$$B(\vec{r}, \hat{s}, \mathbf{v}) = \frac{1}{4\pi^2} \frac{I_0 H(\mathbf{v})}{\sigma_{a_h} \sigma_{a_v} \sigma_h \sigma_v} e^{-(\frac{x^2}{2\sigma_h^2} + \frac{y^2}{2\sigma_v^2})} e^{-(\frac{s_x^2}{2\sigma_{a_h}^2} + \frac{s_y^2}{2\sigma_{a_v}^2})}$$

where $\hat{s} = (s_x, s_y, 1) = (x/z, y/z, 1)$, the σ 's are the beam sizes and angular spreads and H(v) is frequency spectrum.

Brightness is Fourier transform of coherence:

$$B(\vec{r}, \hat{s}, \mathbf{v}) = k^2 \frac{1}{(2\pi)^2} \int \Gamma(\vec{r}, \vec{r}_1) e^{ik\hat{s}_{\perp} \cdot \vec{r}_1} d\vec{r}_1$$

Schell Model

Again the mutual coherence is

$$\Gamma(x_1, x_2) = \frac{I_0}{\sqrt{2\pi}\sigma_s} e^{-\frac{(x_1 + x_2)^2}{8\sigma_s^2}} e^{-\frac{(x_2 - x_1)^2}{2\delta_a^2}}$$

Giving a relation between angular spread and coherence length;

$$\rho_c^2 = \frac{1}{k^2 \sigma_a^2 - \frac{1}{4\sigma_s^2}} = \frac{4\sigma_s^2}{4k^2 \sigma_a^2 \sigma_s^2 - 1}$$

Note, the condition $4k^2\sigma_a^2\sigma_s^2 \ge 1$ or $\sigma_a\sigma_s \ge \lambda/4\pi$ is simply the uncertainty principle.

APS Undulator A Coherence Lengths

Can propagate the partial coherence to experimental station and the coherence lengths are:

$$\Delta_i = \rho_i \sqrt{1 + \left(\frac{z}{k\sigma_i \rho_i}\right)^2}$$

Coherence lengths of an undulator source versus distance. The coherence lengths for an incoherent sources are plotted for comparison. Blue line is for smaller horizontal source.

Outline

- 1. Introduction
- 2. Mutual Coherence
- 3. ABCD Optics
- 4. Propagation of Coherence
- 5. Measurement of Coherence
- 6. Conclusion

ABCD Matrices

From geometric optics, any ray is specified by a position x and angle x'. A ray at plane 2 comes from a unique ray on plane 1.

$$\begin{pmatrix} x_2 \\ x_2' \end{pmatrix} = \mathbf{M} \begin{pmatrix} x_1 \\ x_1' \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} x_1 \\ x_1' \end{pmatrix}$$

for some M an ABCD matrix.

If n_1 and n_2 are the indices of refraction of the medium at the input and output planes,

$$\det(\mathbf{M}) = AD - BC = \frac{n_1}{n_2} = 1 \quad \text{(for us)}.$$

ABCD Matrices

Each optical element has an ABCD matrix M_i . The ABCD matrix for the system is obtained by multiplication:

$$M = M_n \times M_{n-1} \times \dots \times M_2 \times M_1. \tag{1}$$

												Element	Matrix	Remarks
				Talentent ivialia ivialia	Tachiche Maura Remarks	Element Watrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks			
			Licitotti ivality i international internatio	LICITICITY IVIALIA INCIDALNO	Element Ivianta Nemarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks			
			Licitotti ividit ividit	Lichicht	LICITUM IVIALIA INCINALIS	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks			
			Licitorit Within Religions	Lichtin	Lichicht Walth Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks			
				Lichtent	Lichicht Wiants Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks			
			Licitotti iviativ iviativ	Licition Williams	Lichtent Walth Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks			
			Licitotti italia ita ita italia ita italia italia italia ita ita ita ita ita ita ita ita ita i	Lichicht	Lichicht Iviania Komarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks			
					TAGATIGATI	elemeni Wiairix Remarks	Element Watrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks	Element Matrix Remarks			
						Flement Mairix Remarks	Hiement Matrix Remarks	Hiement Matrix Remarks	Hlement Matrix Remarks	Hlement Matrix Remarks	Flement Matrix Remarks			
Element Ivianix Remarks	THEHICHE IVIALIA INCHIALIAN	TACHCHI WALLA KEHALKA							Lilomoont Michael Longoniza	Lilamant Matury Damanka	Lilomont Moterix Domoniza			
Element Matrix Remarks	riement warry Remarks	riemeni iviairix kemarks	PIRMEN MAINY REMARKS							1/1	Makeir Dansalza			

Propagation in free space or in a medium of constant refractive in- $\begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix}$ dex

$$\left(\begin{array}{cc} 1 & d \\ 0 & 1 \end{array}\right)$$

Thin lens

$$\left(\begin{array}{cc} 1 & 0\\ \frac{-1}{f} & 1 \end{array}\right)$$

Focal length f, f > 0, converging, f < 0, diverging

Reflection from a flat mirror

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Identity matrix

Refraction at a flat interface

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & \frac{n_1}{n_2} \end{array}\right)$$

 n_1 , initial refractive index, n_2 , final refractive index

Reflection from a curved mirror

$$\left(\begin{array}{cc} 1 & 0 \\ \frac{-2}{R} & 1 \end{array}\right)$$

R = radius of curvature, R > 0 forconvex

Outline

- 1. Introduction
- 2. Mutual Coherence
- 3. ABCD Optics
- 4. Propagation of Coherence
- 5. Measurement of Coherence
- 6. Conclusion

Gaussian Beams

Propagation of a paraxial Gaussian beam in the z direction gives:

$$E(x,y,z) = E_0 \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \frac{e^{-ikz+i\psi(z)}}{2\sigma(z)} e^{-\frac{x^2+y^2}{4\sigma^2(z)}} e^{-ik\frac{x^2+y^2}{2R(z)}}.$$

with beam size is $\sigma(z)$, radius of curvature R(z) and $\psi(z)$ is the Gouy phase factor. Defining z=0 at the waist of this beam (width σ_0), gives:

$$\sigma(z) = \sigma_0 \sqrt{1 + \left(\frac{z}{z_R}\right)^2}$$

$$R(z) = z + \frac{z_R^2}{z}$$

$$\psi(z) = \tan^{-1}\left(\frac{z}{z_R}\right)$$

$$z_R = \frac{4\pi\sigma_0^2}{\lambda}.$$

The last line defines the Rayleigh length (or Fresnel length).

Using Huygens-Fresnel, propagating $\Gamma(r_1, r_2)$ gives

$$\Gamma(\mathbf{r}_1,\mathbf{r}_2,\tau) = \int_S \int_S \Gamma(\mathbf{r}_1',\mathbf{r}_2',\tau) \frac{e^{ik(L_2-L_1)}}{L_1L_2} \Lambda_1^*(k) \Lambda_2(k) d^2\mathbf{r}_1' d^2\mathbf{r}_2',$$

where $L_i = \mathbf{r}_i - \mathbf{r}'_i$ and $\Lambda_i(k) = ik/2\pi$ for paraxial beams.

For an ABCD optical system (using 1D to simplify notation)

$$\Gamma(x_1; x_2, \tau) = \iint \Gamma(x_1'; x_2', \tau) K^*(x_1'; x_1) K(x_2'; x_2) dx_1' dx_2', \quad (2)$$

where

$$K(x';x) = \sqrt{\frac{ik}{2\pi B}} e^{\frac{ik/2}{B}(Ax'^2 - 2x'x + Dx^2)}$$
 (3)

is the propagation factor. Phase factors cancel in K^*K .

If B = 0 then propagation is between *conjugate* planes, object and image planes). For B = 0 and A = D = 1,

$$\Gamma(x_1'; x_2', \tau) = \Gamma(x_1'; x_2', \tau) P^*(x_1') P(x_2'), \tag{4}$$

where

$$P(x) = e^{\frac{ik}{2}Cx^2}$$

is a pure phase factor. For instance for a thin lens of focal length f, C = -1/f.

For simple propagation (A = D = 1, C = 0 and B = z)

$$\Gamma(x_1, x_2; z) = \frac{I_0}{\sqrt{2\pi}\sigma_s \Delta(z)} e^{-\frac{(x_1 + x_2)^2}{8\sigma_s^2 \Delta^2(z)}} e^{-\frac{(x_2 - x_1)^2}{2\delta_a^2 \Delta^2(z)}}$$

where

$$\Delta(z) = \sqrt{1 + \left(\frac{z}{k\sigma_s\delta_a}\right)^2} = \sqrt{1 + \left(\frac{\sigma_a}{\sigma_s}\right)^2 z^2}$$

The length $z_R = k\sigma_s \delta_a = \sigma_s/\sigma_a$ is a generalization of the Rayleigh or Fresnel length to include partial coherence.

The intensity at z has a width

$$\sigma_s^2(z) = \sigma_s^2 \Delta^2(z) = \sigma_s^2 + \frac{z^2}{k^2 \delta_a^2} = \sigma_s^2 + \sigma_a^2 z^2$$

deriving the angular spread in another way.

Unravelling back we get $\rho_c(z) = \rho_c \Delta(z)$ or

$$\rho_c^2(z) = \rho_c^2 + \frac{z^2}{k^2 \sigma_s^2} \left(1 + \frac{\rho_c^2}{2\sigma_s^2} \right).$$

At large z and small coherence length at the source,

$$\rho_c(z) = \lambda z / 2\pi \sigma_s$$

For Paraxial beams, with any ABCD optical system, the coherence length is a constant fraction of the beam's dimension.

(Note exception for slits.)

In general, for optical system ABCD:

$$\Delta_i = \sqrt{\left(A + \frac{B}{r_i}\right)^2 + \left(\frac{B}{z_R}\right)^2},\tag{5}$$

and the radius of curvature is

$$R_{i} = \operatorname{sgn}(B) \frac{\left(A + \frac{B}{r_{i}}\right)^{2} + \left(\frac{B}{z_{R}}\right)^{2}}{\left(A + \frac{B}{r_{i}}\right)\left(C + \frac{D}{r_{i}}\right) + \left(\frac{1}{z_{R}}\right)^{2}BD}.$$
 (6)

This completely specifies the coherence for any beam.

Why Coherence?

Coherence allows one to measure the dynamics of a material (X-ray Photon Correlation Spectroscopy, XPCS).

$$\langle I(\vec{Q},t)I(\vec{Q}+\delta\vec{\kappa},t+\tau)\rangle = \langle I(Q)\rangle^2 + \beta(\vec{\kappa})\frac{r_0^4}{R^4}V^2I_0^2\left|S(\vec{Q},t)\right|^2$$

where the coherence part is:

$$\beta(\vec{\kappa}) = \frac{1}{V^2 I_0^2} \int_V \int_V e^{i\vec{\kappa} \cdot (\vec{r}_2 - \vec{r}_1)} \left| \Gamma(\vec{0}, \vec{r}_2^{\perp} - \vec{r}_1^{\perp}, \frac{\vec{Q} \cdot (\vec{r}_2 - \vec{r}_1)}{\omega_0}) \right|^2 d\vec{r}_1 d\vec{r}_2$$

and $\beta(\vec{0}) \approx \frac{V_{coherence}}{V_{scattering}}$ with widths $\lambda/V^{\frac{1}{3}}$

Reference: M. Sutton, Coherent X-ray Diffraction, in Third-Generation Hard X-ray

Synchrotron Radiation Sources: Source Properties, Optics, and Experimental

Techniques, edited by. Dennis M. Mills, John Wiley and Sons, Inc, New York, (2002).

Using

$$|\Gamma(x_1, z_1, x_2, z_2, t)|^2 = V^2 \langle |E_i|^2 \rangle^2 e^{\frac{-(x_2 - x_1)^2}{\xi_h^2}} e^{\frac{-(z_2 - z_1)^2}{\xi_v^2}} e^{-2t/\tau}.$$

 ξ_h , ξ_v transverse coherence lengths

$$\xi_l = c\tau = \lambda^2/(\pi\Delta\lambda) = 2\lambda/(k_0\Delta\lambda)$$
: longitudinal coherence length

The coherence factor is thus

$$\beta = \beta(0) = \int_{V} \int_{V} e^{\frac{-(x_2 - x_1)^2}{\xi_h^2}} e^{\frac{-(y_2 - y_1)^2}{\xi_v^2}} e^{-2t/\tau}.$$

where V is the diffraction volume.

The time difference is

$$t = \vec{Q} \cdot (\vec{r_2} - \vec{r_1}) / ck_0$$

and thus

$$t/\tau = \frac{\vec{Q} \cdot (\vec{r}_2 - \vec{r}_1)}{ck_0} \times \frac{k_0 c \Delta \lambda}{2\lambda}$$

$$= \frac{\Delta \lambda}{\lambda} Q \sqrt{1 - \frac{Q^2}{4k_0^2} \Delta x - \frac{\Delta \lambda}{2\lambda} \frac{Q^2}{k_0} \Delta y}$$

$$= (A\Delta x + B\Delta y)/2$$

So define $\beta = \beta_z \beta_r$ where

$$\beta_{z} = \frac{1}{M^{2}} \int_{0}^{M} dz_{1} \int_{0}^{M} dz_{2} e^{\frac{-(z_{2}-z_{1})^{2}}{\xi_{v}^{2}}}$$

$$= \frac{\xi_{v}^{2}}{M^{2}} \left[\frac{M}{\xi_{v}} \sqrt{\pi} \operatorname{erf}(\frac{M}{\xi_{v}}) + e^{\frac{-M^{2}}{\xi_{v}^{2}}} - 1 \right]$$

and

$$\beta_{r} = \frac{1}{(WL)^{2}} \int_{0}^{L} dx_{1} \int_{0}^{L} dx_{2} \int_{0}^{W} dy_{1} \int_{0}^{W} dy_{2} e^{\frac{-(x_{2}-x_{1})^{2}}{\xi_{h}^{2}}} e^{-|A(x_{2}-x_{1})+B(y_{2}-y_{1})|}$$

$$= \frac{2}{(WL)^{2}} \int_{0}^{L} dx (L-x) \int_{0}^{W} dy (W-y) e^{\frac{-x^{2}}{\xi_{h}^{2}}} \left[e^{-|Ax+By|} + e^{-|Ax-By|} \right].$$

This can be straight forwardly evaluated numerically.

$$\delta_{zz}^{-2} = \frac{1}{\beta V^2 I_0^2} \int_V \int_V (z_2 - z_1)^2 \left| \Gamma(\vec{0}, \vec{r}_2^{\perp} - \vec{r}_1^{\perp}, \frac{\vec{Q} \cdot (\vec{r}_2 - \vec{r}_1)}{\omega_0}) \right|^2 d\vec{r}_1 d\vec{r}_2$$

and

$$\delta_{xx}^{-2} = \frac{1}{\beta V^2 I_0^2} \int_V \int_V (x_2 - x_1)^2 \left| \Gamma(\vec{0}, \vec{r}_2^{\perp} - \vec{r}_1^{\perp}, \frac{\vec{Q} \cdot (\vec{r}_2 - \vec{r}_1)}{\omega_0}) \right|^2 d\vec{r}_1 d\vec{r}_2$$

and

$$\delta_{rr}^{-2} = \delta_{xx}^{-2}\cos^2 2\theta + \delta_{yy}^{-2}\sin^2 2\theta$$

where δ_{rr} is the speckle width in the scattering plane (radial).

Outline

- 1. Introduction
- 2. Mutual Coherence
- 3. ABCD Optics
- 4. Propagation of Coherence
- 5. Measurement of Coherence
- 6. Conclusion

X-ray Setup, Beamline 8-ID-E (APS)

Knife edge

Diffraction

Fresnel lens propagation

Vertical beam size.

Horizontal beam size.

Fitting Knife-edge Scans

Smoothing for derivative.

Directly Fit Derivative of Scan

Fitting Knife-edge Scans

Vertical beam size.

Size versus gap.

Coherence Measurement

Cross-correlation Speckle Analysis. Fe₃Al $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ $Q = 1.5 \text{Å}^{-1}$

Coherence Measurement

Horizontal speckle size and contrast.

Vertical speckle size and contrast.

Speckle Contrast Fe₃**Al** $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

Cross-correlation Speckle Analysis.

Speckle Contrast Fe₃**Al** $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

Horizontal speckle size and contrast.

Vertical speckle size and contrast.

Outline

- 1. Introduction
- 2. Mutual Coherence
- 3. ABCD Optics
- 4. Propagation of Coherence
- 5. Measurement of Coherence
- 6. Conclusion

Signal to Noise

Signal is $g_2 - 1 = \beta$ and variance of is $var(g_2) \sim 1/(\bar{n}^2 N)$. So:

$$\frac{S}{n} = \beta \bar{n} \sqrt{N}$$

$$= \beta I \tau \sqrt{\frac{t_{total}}{\tau} N_{speckles}}$$

$$= \beta I \sqrt{\tau t_{total} N_{pixels}}$$

Note 1: This is linear in number of photons (as opposed to \sqrt{n}). Note 2: For fixed $s/n \sim \alpha I \sqrt{\tau/\alpha^2}$. Thus an α -fold increase in intensity is an α^2 -fold increase in time resolution. Need very fast detectors.

Reference: Area detector based photon correlation in the regime of short data batches: data reduction for dynamic x-ray scattering, D. Lumma, L.B. Lurio, S.G.J. Mochrie, and M. Sutton, Rev. Sci. Instr. **71**, 3274-3289 (2000).

Signal to Noise

More explicitly:

$$\frac{s}{n} \approx \beta B_{0} dx dx' dy dy' \frac{\Delta E}{E} \frac{1}{V} \frac{d\sigma}{d\Omega} L \sqrt{N_{sp}}$$

$$\approx \beta B_{0} f_{x} f_{y} \lambda^{2} \frac{\Delta E}{E} \frac{1}{V} \frac{d\sigma}{d\Omega} f_{z} \frac{\lambda^{2}}{\Delta \lambda} \sqrt{N_{sp}}$$

$$\approx \frac{1}{max(1, f_{i})^{3}} B_{0} f_{x} f_{y} f_{z} \lambda^{2} \frac{\Delta \lambda}{\lambda} \frac{1}{V} \frac{d\sigma}{d\Omega} \frac{\lambda^{2}}{\Delta \lambda} \sqrt{N_{sp}}$$

$$\approx B_{0} \lambda^{3} \frac{1}{V} \frac{d\sigma}{d\Omega} \sqrt{N_{sp}}$$

$$\approx f B_{0} \lambda^{3} \frac{1}{V} \frac{d\sigma}{d\Omega} \sqrt{N_{sp}} \quad (if any f_{i} < 1).$$

Note: should be a $\lambda^3/8$ as normally use $\lambda/2$.

Conclusions

- 1. Except for slits coherence length scales as beam size.
- 2. Partially coherent Gaussian beams are parameterized by two parameters, $\Delta(z)$ how size scales and R_c the radius of curvature of the beam (diverging or converging).
- 3. Diffraction mixes transverse and longitudinal coherence.
- 4. ABCD optics give a good scaling relation on how coherence varies along the beam.