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Spectroscopyl
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Correlation functionsl

One conventionally normalizes

(E(E(I+1))

(1) T
g (T =
=B 0ED)
More generally:
g(1)<§r71): <E (r—|—8r,t—|—’C)E(r,t)>

(E*(F,1)E(F,1))
And its spatial Fourier transform is what matters for diffraction.



More correlationsl

Can also define a higher order correlation function:

((Q,1)1(Q,1+1))

<(Q )’
_ EWEQE+T)E(+1T))

g?(1) =

(EX(1)E(1))

And often this 1s (Gaussian statistics):

g?(1) =1+ (7))’



Mutual Coherence Functionl

Define

[(F1, 7o, t1,00) = (E7(F1, 1) E (P2, 12)) -
where E(7,t) is the electric field. Also define

W (7,7, V) = / [(7),7,7)e"™dt

and 1t’s normalized form:
W(?la I, V)

W(?la?lv )1/2W(}"2, ra,V )1/2

(71,7, V) =

Finally:
<E*(71 , Vl)E(?z, V2)> = W(?l , 72, V1)6(V1 — V2) .
Reference: Coherent X-ray Diffraction, Mark Sutton

Third-Generation Hard X-ray Synchrotron Radiation Sources,

Ed. D. M. Mills, Wiley (2002).



Why Coherence?l

Coherence allows one to measure the dynamics of a material
(X-ray Photon Correlation Spectroscopy, XPCS).
- - . R - 2
(18,010 +8%,1+7)) = (1(Q))* +B(R) 15V |S(0.1)|

where the coherence part is:

. 2
Y 1 i (FH—7 R ol =l Q'(72—71) 5o
B(K):Vzlg/v/veK(z % F(O,r2 — T, 0 ) dridr;

and B(0) ~ Leekerence with widths A/V'3

scattering

Reference: M. Sutton, Coherent X-ray Diffraction, in Third-Generation Hard X-ray
Synchrotron Radiation Sources: Source Properties, Optics, and Experimental

Techniques, edited by. Dennis M. Mills, John Wiley and Sons, Inc, New York, (2002).



Coherent diffraction

|

(001) CusAu peak

Sutton et al., The Observation of Speckle by Diffraction with Coherent X-rays, Nature, 352, 608-610 (1991).
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Gaussian Schell Modell

Assume:

1
F(rl,rz,tl,tz) — I(rl,tl) (I(l'z,tz)z,u(l’l — I, — l‘1)

| —

Since u(0) = 1, we see that I'(r,r,¢,1) = I(r,1)

Assume profiles are Gaussian (Simplifying to one dimension)
2

e_ZGS
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Gaussian Schell Modell

Writing the mutual coherence as a function of |+, and r) —r;
gives

.
[(x1,x) = e *5e “se 2w

defining




Brightness I

Conventionally brightness has the form:

1 IhH(V) () (S ol
B(7,3,v) = 0 e % 2o 2, 2
47> 4,064,010y

where § = (sy, 5y, 1) = (x/z,y/z,1), the 6’s are the beam sizes and angular
spreads and H (V) is frequency spectrum.
Brightness is Fourier transform of coherence:

1 A o




Schell Model

Again the mutual coherence 1s

I, (1)® (=)

V 2TO,
Giving a relation between angular spread and coherence length;

»? 1 462
C 7122 1 7 AR~2~2
kca—4—6% 4k<c-0: —1

F()Cl,XQ) =

Note, the condition 4k*c26% > 1 or 6,6, > A/4m is simply the
uncertainity principle.



APS Undulator A Coherence Lengthsl

Can propagate the partial coherence to experimental station and the coherence

lengths are:
N
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ABCD Matricesl

From geometric optics, any ray is specified by a
position x and angle x’. A ray at plane 2 comes fror
a a unique ray on plane 1.

X7 o X1 . A B X1
(%>_M(%>_(CD)<%>
for some M an ABCD matrix.

If n, and n, are the indices of refraction of the
medium at the input and output planes,
ni

det(M) =AD —-BC=—=1 (for us).
ns



ABCD Matricesl

Each optical element has an ABCD matrix M;. The ABCD matrix
for the system 1s obtained by multiplication:

M=M,xM,_{x---xM>,xM,;. (1)



ABCD Matricesl

Element Matrix Remarks

1

Propagation in free space or in a ( 0 cll ) d =length

medium of constant refractive in-

dex

: 1 O :

Thin lens -1 Focal length f, f > 0, converging,
f f <0, diverging

Reflection from a flat mirror ( (1) (1) ) Identity matrix

: : 1 0 . o
Refraction at a flat interface 0 ny, initial refractive index, n,, final
"2 refractive index

Reflection from a curved mirror ( D (1) > R = radius of curvature, R > 0O for

R

convex
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Gaussian Beamsl

Propagation of a paraxial Gaussian beam in the z direction gives:

2

Ze ) i
E —FE | = 462(z) 2R(z)
(X,y, Z) 0 (TC) ZG(Z) € e

with beam size is 6(z), radius of curvature R(z) and y(z) is the Gouy phase
factor. Defining z = O at the waist of this beam (width G), gives:

—ikz+iy(z) 2 1212

R(z) = 1+ &
Z
v(z) = tan™! (5)
ZR
4 2
ZR — T;LGO

The last line defines the Rayleigh length (or Fresnel length).



Propagation of Coherencel

Using Huygens-Fresnel, propagating I'(r,7,) gives

lkL2 Ll) § ) )

where L; =1; — 1 and Ai(k) =ik / 27 for paraxial beams.
For an ABCD optlcal system (using 1D to simplify notation)

[(x1;x2,T) = //F(x’l;x’z,’c) K*(x;x1) K(x5;x0) dxjdxy,  (2)

where
ik k)2 V20 et D2
K(x'5x) =4/ 525 (A =20k Dx’) (3)

1s the propagation factor. Phase factors cancel in K*K.




Propagation of Coherencel

It B = 0 then propagation 1s between conjugate planes, object
and 1image planes). For B=0and A =D =1,
(x50, 7) = T(x;5.x0, T) P (x)) P(x3), (4)
where -
P(x) = e2®
1s a pure phase factor. For instance for a thin lens of focal length

f’C:_l/f



Propagation of Coherencel

For simple propagation (A =D =1, C=0and B = 7)

I C(xpt)? (pxp)?

— e 805A2(2) p 283A2(2)
V216 ,A(z)

A(z) = \/1+ (kﬁis)zz \/1+ (2—‘:)12

The length zg = k6,0, = G;/G, is a generalization of the Rayleigh
or Fresnel length to include partial coherence.

['(x1,x2;2)

where




Propagation of Coherencel

The intensity at z has a width
2
Z
282
deriving the angular spread in another way.
Unravelling back we get p.(z) = p.A(z) or

2 » | T Pz
= — | 1 = .
At large z and small coherence length at the source,
p.(z) = Az/2mo;

For Paraxial beams, with any ABCD optical system, the coher-
ence length 1s a constant fraction of the beam’s dimension.

02(z) = 6°A*(2) =62+ —= = 0- + 027

\)

(Note exception for slits.)



Propagation of Coherencel

In general, for optical system ABCD:

(o) ()

and the radius of curvature 1s
2 2
(a+2) + (%)
Fi ZR

R; = sgn(B)

—
(A+§) (C+?)+(é) BD

This completely specifies the coherence for any beam.

(5)

(6)



Why Coherence?l

Coherence allows one to measure the dynamics of a material
(X-ray Photon Correlation Spectroscopy, XPCS).
- - . R - 2
(18,010 +8%,1+7)) = (1(Q))* +B(R) 15V |S(0.1)|

where the coherence part is:

. 2
Y 1 i (FH—7 R ol =l Q'(72—71) 5o
B(K):Vzlg/v/veK(z % F(O,r2 — T, 0 ) dridr;

and B(0) ~ Leekerence with widths A/V'3

scattering

Reference: M. Sutton, Coherent X-ray Diffraction, in Third-Generation Hard X-ray
Synchrotron Radiation Sources: Source Properties, Optics, and Experimental

Techniques, edited by. Dennis M. Mills, John Wiley and Sons, Inc, New York, (2002).



Coherence in Diffractionl

Using
_(ngxl)z —(zp—21)?
T(x1,21,%0,20,0) P = V2 (|E|®)?e % e & e 27

Ch» Gy transverse coherence lengths
& = ct=M\*/(nAN) = 21/ (koAMN): longitudinal coherence length

The coherence factor 1s thus

b~ BO) - | / o H e

where V 1s the diffraction volume.



Coherence in Diffractionl

The time difference 1s

and thus
- Q (?2 — ?1) koCA?\.
t/T N Ck() 27\.
Y Q2 ANQ?

= (AAx+ BAy)/?2



Coherence in Diffraction

W-+tan(Y)x

y:

X—rays



Coherence in Diffractionl

So define B = B,B3,

where
—(zp—21)~ z1
BZ — M2/ le/ dze &

M2 lgv\ferf(g ) +ed — 1]

B, = WL /dxl/ dX2/ dy1/ dyze &2 o~ A2 —x1)+B(y2—y1)|

— (WL) / dx(L— x)/o dy(W — y) [ “lAxtBy] oAy By']

This can be straight forwardly evaluated numerically.

and




Coherence in Diffractionl

1 S - (Fh—TF
SZ_ZZZ /V/V(ZZ_Z1)2 F(O,?é‘—?li,Q (2 1)) d71d72

szlg M
and
. 2
1 . . e d _—)
6’;2:BV212 / / (x0—x,)2 |C(0, 7 — 7L, 2 (';2) "N i
0JvJV 0
and

5.7 =8_7cos*20+ By_yz sin”20
where 9,, is the speckle width in the scattering plane (radial).
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X-ray Setup, Beamline 8-ID-E (APS)
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Fresnel lens propagationl
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Fitting Knife-edge Scans
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Fitting Knife-edge Scansl
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Coherence Measurement
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Coherence Measurementl
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Speckle Contrast Fe;Al (3,1,1)
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Speckle Contrast Fe;Al (3,1,1)
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Signal to N Oisel

Signal is g, — 1 = B and variance of is var(g,) ~ 1/(ii*N). So:

= = BiavN

n
ltotal
BI T \/ TN speckles

— BI \/ TotallV pixels

Note 1: This is linear in number of photons (as opposed to /7).
Note 2: For fixed s/n ~ al+/7t/0*. Thus an o-fold increase in
intensity is an o>-fold increase in time resolution. Need very fast
detectors.

Reference: Area detector based photon correlation in the regime of short data batches: data

reduction for dynamic x-ray scattering, D. Lumma, L.B. Lurio, S.G.J. Mochrie, and M.

Sutton, Rev. Sci. Instr. 71, 3274-3289 (2000).



Signal to N Oisel

More explicitly:
% ~ BBodxdx’dydy’% éj—gL v/ Nsp
~ Baofs, 208 140 R |
S T Axk o V%
1 do

~ By 7\.3Vd—Q\/NSp (ifanyf; < 1).
Note: should be a A° /8 as normally use A/2.



Conclusions I

1. Except for slits coherence length scales as beam size.

2. Partially coherent Gaussian beams are parameterized by two
parameters, A(z) how size scales and R, the radius of curvature

of the beam (diverging or converging).

3. Diffraction mixes transverse and longitudinal coherence.

4. ABCD optics give a good scaling relation on how coherence
varies along the beam.



