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Spectroscopy

I(ω) = |E(ω)|2

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
E∗(t)E(t ′)eiω(t−t′)dtdt ′

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
E∗(t)E(t + τ)eiωτdtdτ

Wiener-Khinchin theorem

I(ω) =
1

2π

∫ ∞

−∞
〈E∗(t)E(t + τ)〉eiωτdτ



Correlation functions

One conventionally normalizes

g(1)(τ) =
〈E∗(t)E(t + τ)〉
〈E∗(t)E(t)〉

More generally:

g(1)(~δr,τ) =
〈E∗(~r + ~δr, t + τ)E(~r, t)〉

〈E∗(~r, t)E(~r, t)〉
And its spatial Fourier transform is what matters for diffraction.



More correlations

Can also define a higher order correlation function:

g(2)(τ) =
〈I(Q, t)I(Q, t + τ)〉

〈I(Q, t)〉2

=
〈E∗(t)E(t)E∗(t + τ)E(t + τ)〉

〈E∗(t)E(t)〉2

And often this is (Gaussian statistics):

g(2)(τ) = 1+ |g(1)(τ)|2



Mutual Coherence Function

Define
Γ(~r1,~r2, t1, t2) = 〈E∗(~r1, t1)E(~r2, t2)〉.

where ~E(~r, t) is the electric field. Also define

W (~r1,~r2,ν) =
∫ ∞

−∞
Γ(~r1,~r2,τ)e2πiντdτ

and it’s normalized form:

µ(~r1,~r2,ν) =
W (~r1,~r2,ν)

W (~r1,~r1,ν)1/2W (~r2,~r2,ν)1/2.

Finally:
〈E∗(~r1,ν1)E(~r2,ν2)〉 = W (~r1,~r2,ν1)δ(ν1−ν2).

Reference: Coherent X-ray Diffraction, Mark Sutton

Third-Generation Hard X-ray Synchrotron Radiation Sources,

Ed. D. M. Mills, Wiley (2002).



Why Coherence?

Coherence allows one to measure the dynamics of a material
(X-ray Photon Correlation Spectroscopy, XPCS).

〈I(~Q, t)I(~Q+δ~κ, t + τ)〉 = 〈I(Q)〉2 +β(~κ)
r4

0

R4V 2I2
0

∣∣∣S(~Q, t)
∣∣∣2

where the coherence part is:

β(~κ) =
1

V 2I2
0

∫
V

∫
V

ei~κ·(~r2−~r1)

∣∣∣∣∣Γ(~0,~r⊥2 −~r⊥1 ,
~Q · (~r2−~r1)

ω0
)

∣∣∣∣∣
2

d~r1d~r2

and β(~0) ≈ Vcoherence
Vscattering

with widths λ/V
1
3

Reference: M. Sutton, Coherent X-ray Diffraction, in Third-Generation Hard X-ray

Synchrotron Radiation Sources: Source Properties, Optics, and Experimental

Techniques, edited by. Dennis M. Mills, John Wiley and Sons, Inc, New York, (2002).



Coherent diffraction

(001) Cu3Au peak

Sutton et al., The Observation of Speckle by Diffraction with Coherent X-rays, Nature, 352, 608-610 (1991).
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Gaussian Schell Model

Assume:

Γ(r1,r2, t1, t2) = I(r1, t1)
1
2(I(r2, t2)

1
2µ(r1− r2, t2− t1)

Since µ(0) = 1, we see that Γ(r,r, t, t) = I(r, t)

Assume profiles are Gaussian (Simplifying to one dimension)

I(x) =
I0√
2πσs

e
− x2

2σ2
s

and

µ(x2− x1) = e
−(x2−x1)2

2ρ2c .



Gaussian Schell Model

Writing the mutual coherence as a function of r1 + r2 and r2−r1

gives

Γ(x1,x2) =
I0√
2πσs

e
−

x2
1

4σ2
s e

−
x2
2

4σ2
s e

−(x2−x1)2

2ρ2c

=
I0√
2πσs

e
−(x1+x2)2

8σ2
s e

−(x2−x1)2
(

1
2ρ2c

+ 1
8σ2

s

)

=
I0√
2πσs

e
−(x1+x2)2

8σ2
s e

−(x2−x1)2

2δ2a

defining
1
δ2

a
=

1
ρ2

c
+

1
4σ2

s



Brightness

Conventionally brightness has the form:

B(~r, ŝ,ν) =
1

4π2

I0H(ν)
σahσavσhσv

e
−( x2

2σ2
h
+ y2

2σ2v
)
e
−( s2

x
2σ2ah

+
s2
y

2σ2av
)

where ŝ = (sx,sy,1) = (x/z,y/z,1), the σ’s are the beam sizes and angular
spreads and H(ν) is frequency spectrum.
Brightness is Fourier transform of coherence:

B(~r, ŝ,ν) = k2 1
(2π)2

∫
Γ(~r,~r1)eikŝ⊥·~r1d~r1



Schell Model

Again the mutual coherence is

Γ(x1,x2) =
I0√
2πσs

e
−(x1+x2)2

8σ2
s e

−(x2−x1)2

2δ2a

Giving a relation between angular spread and coherence length;

ρ2
c =

1
k2σ2

a− 1
4σ2

s

=
4σ2

s

4k2σ2
aσ2

s −1

Note, the condition 4k2σ2
aσ2

s ≥ 1 or σaσs ≥ λ/4π is simply the
uncertainity principle.



APS Undulator A Coherence Lengths

Can propagate the partial coherence to experimental station and the coherence
lengths are:

∆i = ρi

√
1+

(
z

kσiρi

)2
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ABCD Matrices

(x2, x
′

2
) (x1, x

′

1
)

(0, 0) (0, 0)

From geometric optics, any ray is specified by a
position x and angle x′. A ray at plane 2 comes from
a a unique ray on plane 1.(

x2

x′2

)
= M

(
x1

x′1

)
=

(
A B
C D

)(
x1

x′1

)
for some M an ABCD matrix.

If n1 and n2 are the indices of refraction of the
medium at the input and output planes,

det(M) = AD−BC =
n1

n2
= 1 (for us).



ABCD Matrices

Each optical element has an ABCD matrix Mi. The ABCD matrix
for the system is obtained by multiplication:

M = Mn×Mn−1×·· ·×M2×M1. (1)



ABCD Matrices
Element Matrix Remarks

Propagation in free space or in a
medium of constant refractive in-
dex

(
1 d
0 1

)
d =length

Thin lens
(

1 0
−1

f 1

)
Focal length f, f > 0, converging,
f < 0, diverging

Reflection from a flat mirror
(

1 0
0 1

)
Identity matrix

Refraction at a flat interface
(

1 0
0 n1

n2

)
n1, initial refractive index, n2, final
refractive index

Reflection from a curved mirror
(

1 0
−2
R 1

)
R = radius of curvature, R > 0 for
convex
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Gaussian Beams

Propagation of a paraxial Gaussian beam in the z direction gives:

E(x,y,z) = E0

(
2
π

)1
2 e−ikz+iψ(z)

2σ(z)
e
−x2+y2

4σ2(z)e−ikx2+y2
2R(z) .

with beam size is σ(z), radius of curvature R(z) and ψ(z) is the Gouy phase
factor. Defining z = 0 at the waist of this beam (width σ0), gives:

σ(z) = σ0

√
1+

(
z
zR

)2

R(z) = z+
z2

R

z

ψ(z) = tan−1
(

z
zR

)
zR =

4πσ2
0

λ
.

The last line defines the Rayleigh length (or Fresnel length).



Propagation of Coherence

Using Huygens-Fresnel, propagating Γ(r1,r2) gives

Γ(r1,r2,τ) =
∫

S

∫
S
Γ(r ′

1,r
′
2,τ)

eik(L2−L1)

L1L2
Λ∗

1(k)Λ2(k)d2r ′
1 d2r ′

2,

where Li = ri− r ′
i and Λi(k) = ik/2π for paraxial beams.

For an ABCD optical system (using 1D to simplify notation)

Γ(x1;x2,τ) =
∫ ∫

Γ(x′1;x′2,τ) K∗(x′1;x1) K(x′2;x2) dx′1dx′2, (2)

where

K(x′;x) =

√
ik

2πB
e

ik/2
B (Ax′2−2x′x+Dx2) (3)

is the propagation factor. Phase factors cancel in K∗K.



Propagation of Coherence

If B = 0 then propagation is between conjugate planes, object
and image planes). For B = 0 and A = D = 1,

Γ(x′1;x′2,τ) = Γ(x′1;x′2,τ)P
∗(x′1)P(x′2), (4)

where
P(x) = e

ik
2 Cx2

is a pure phase factor. For instance for a thin lens of focal length
f , C = −1/ f .



Propagation of Coherence

For simple propagation (A = D = 1, C = 0 and B = z)

Γ(x1,x2;z) =
I0√

2πσs∆(z)
e
−(x1+x2)2

8σ2
s ∆2(z)e

−(x2−x1)2

2δ2a∆2(z)

where

∆(z) =

√
1+

(
z

kσsδa

)2

=

√
1+

(
σa

σs

)2

z2

The length zR = kσsδa = σs/σa is a generalization of the Rayleigh
or Fresnel length to include partial coherence.



Propagation of Coherence

The intensity at z has a width

σ2
s(z) = σ2

s∆2(z) = σ2
s +

z2

k2δ2
a
= σ2

s +σ2
az2

deriving the angular spread in another way.
Unravelling back we get ρc(z) = ρc∆(z) or

ρ2
c(z) = ρ2

c +
z2

k2σ2
s

(
1+

ρ2
c

2σ2
s

)
.

At large z and small coherence length at the source,

ρc(z) = λz/2πσs

For Paraxial beams, with any ABCD optical system, the coher-
ence length is a constant fraction of the beam’s dimension.
(Note exception for slits.)



Propagation of Coherence

In general, for optical system ABCD:

∆i =

√(
A+

B
ri

)2

+
(

B
zR

)2

, (5)

and the radius of curvature is

Ri = sgn(B)

(
A+ B

ri

)2
+

(
B
zR

)2

(
A+ B

ri

)(
C + D

ri

)
+

(
1
zR

)2
BD

. (6)

This completely specifies the coherence for any beam.



Why Coherence?

Coherence allows one to measure the dynamics of a material
(X-ray Photon Correlation Spectroscopy, XPCS).

〈I(~Q, t)I(~Q+δ~κ, t + τ)〉 = 〈I(Q)〉2 +β(~κ)
r4

0

R4V 2I2
0

∣∣∣S(~Q, t)
∣∣∣2

where the coherence part is:

β(~κ) =
1

V 2I2
0

∫
V

∫
V

ei~κ·(~r2−~r1)

∣∣∣∣∣Γ(~0,~r⊥2 −~r⊥1 ,
~Q · (~r2−~r1)

ω0
)

∣∣∣∣∣
2

d~r1d~r2

and β(~0) ≈ Vcoherence
Vscattering

with widths λ/V
1
3

Reference: M. Sutton, Coherent X-ray Diffraction, in Third-Generation Hard X-ray

Synchrotron Radiation Sources: Source Properties, Optics, and Experimental

Techniques, edited by. Dennis M. Mills, John Wiley and Sons, Inc, New York, (2002).



Coherence in Diffraction

Using

|Γ(x1,z1,x2,z2, t)|2 = V 2 〈|Ei|2〉2 e
−(x2−x1)2

ξ2
h e

−(z2−z1)2

ξ2v e−2t/τ.

ξh, ξv transverse coherence lengths
ξl = cτ = λ2/(π∆λ) = 2λ/(k0∆λ): longitudinal coherence length

The coherence factor is thus

β = β(0) =
∫

V

∫
V

e
−(x2−x1)2

ξ2
h e

−(y2−y1)2

ξ2v e−2t/τ.

where V is the diffraction volume.



Coherence in Diffraction

The time difference is

t = ~Q · (~r2−~r1)/ck0

and thus

t/τ =
~Q · (~r2−~r1)

ck0
× k0c∆λ

2λ

=
∆λ
λ

Q

√
1− Q2

4k2
0
∆x− ∆λ

2λ
Q2

k0
∆y

= (A∆x+B∆y)/2



Coherence in Diffraction



Coherence in Diffraction
So define β = βzβr

where

βz =
1

M2

∫ M

0
dz1

∫ M

0
dz2e

−(z2−z1)2

ξ2v

=
ξ2

v

M2

[
M
ξv

√
πerf(

M
ξv

) + e
−M2

ξ2v − 1

]
and

βr =
1

(WL)2

∫ L

0
dx1

∫ L

0
dx2

∫ W

0
dy1

∫ W

0
dy2e

−(x2−x1)2

ξ2
h e−|A(x2−x1)+B(y2−y1)|

=
2

(WL)2

∫ L

0
dx(L− x)

∫ W

0
dy(W − y)e

−x2

ξ2
h

[
e−|Ax+By| + e−|Ax−By|

]
.

This can be straight forwardly evaluated numerically.



Coherence in Diffraction

δ−2
zz =

1
βV 2I2

0

∫
V

∫
V
(z2− z1)2

∣∣∣∣∣Γ(~0,~r⊥2 −~r⊥1 ,
~Q · (~r2−~r1)

ω0
)

∣∣∣∣∣
2

d~r1d~r2

and

δ−2
xx =

1
βV 2I2

0

∫
V

∫
V
(x2− x1)2

∣∣∣∣∣Γ(~0,~r⊥2 −~r⊥1 ,
~Q · (~r2−~r1)

ω0
)

∣∣∣∣∣
2

d~r1d~r2

and
δ−2

rr = δ−2
xx cos2 2θ+δ−2

yy sin2 2θ
where δrr is the speckle width in the scattering plane (radial).
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X-ray Setup, Beamline 8-ID-E (APS)
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Fresnel lens propagation
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Fitting Knife-edge Scans
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Fitting Knife-edge Scans
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Coherence Measurement
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Coherence Measurement
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Speckle Contrast Fe3Al (1
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Signal to Noise

Signal is g2−1 = β and variance of is var(g2) ∼ 1/(n̄2N). So:
s
n

= βn̄
√

N

= βIτ
√

ttotal

τ
Nspeckles

= βI
√

τttotalNpixels

Note 1: This is linear in number of photons (as opposed to
√

n̄).
Note 2: For fixed s/n ∼ αI

√
τ/α2. Thus an α-fold increase in

intensity is an α2-fold increase in time resolution. Need very fast
detectors.
Reference: Area detector based photon correlation in the regime of short data batches: data

reduction for dynamic x-ray scattering, D. Lumma, L.B. Lurio, S.G.J. Mochrie, and M.

Sutton, Rev. Sci. Instr. 71, 3274-3289 (2000).



Signal to Noise

More explicitly:

s
n
≈ β B0dxdx ′dydy ′∆E

E
1
V

dσ
dΩ

L
√

Nsp

≈ βB0 fx fy λ2 ∆E
E

1
V

dσ
dΩ

fz
λ2

∆λ
√

Nsp

≈ 1
max(1, fi)3B0 fx fy fz λ2 ∆λ

λ
1
V

dσ
dΩ

λ2

∆λ
√

Nsp

≈ B0 λ3 1
V

dσ
dΩ

√
Nsp

≈ f B0 λ3 1
V

dσ
dΩ

√
Nsp (i f any fi < 1).

Note: should be a λ3/8 as normally use λ/2.



Conclusions

1. Except for slits coherence length scales as beam size.

2. Partially coherent Gaussian beams are parameterized by two
parameters, ∆(z) how size scales and Rc the radius of curvature
of the beam (diverging or converging).

3. Diffraction mixes transverse and longitudinal coherence.

4. ABCD optics give a good scaling relation on how coherence
varies along the beam.


