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The mirror system transports coherent X-Rays to experiment stations

Near exp.
hall

* Soft Offset X-ray Mirrors (SOMS)
deliver 0.827 — 2.0 keV X-Rays to
the Near Experiment Hall
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* HOMS & SOMS designs are similar, but HOMS has tighter
figure and pointing requirements:

<9 nm (sphere) & 2 nm (aspheric) figure error (P-V)
< 50 nano-radian pointing resolution & stability
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HOMS and SOMS assemblies have many functions and features in
common
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& mirror
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The HOMS mirror pointing range is +/- 1 milli-radian, with 50 nano-
radian resolution

« Accomplished by rotating the chamber with a gear reduced offset cam
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* Threats to pointing stability during an experiment include:

Theoretical

- pointing jitter (> 1 Hz) from amplified ground vibration
- temperature dependent pointing drifts (<1 Hz)

SRI 2010 Tom McCarville

mccarville1@lInl.gov



Pointing jitter from ground vibration was limited by stiffening the
structures and mechanisms

* Pointing jitter in the rotation &
translation mechanisms measured
with a capacitance sensor pair

* Hard x-ray beam pointing
sweep at experiment station
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Thermally induced pointing drifts are controlled with local temperature
control

* Pointing & centering drift of mechanisms was measured: d6/dT = 3 urad/°C
- dT < 0.01°C required to limit pointing drift < 30 nano-radians

* Local insulating enclosures are constructed around the mirror assemblies

* Closed loop thermal control maintains internal
temperatures stable within < 0.01C
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1” vacuum insulation panels are equivalent to 6” thick fiber insulation
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Pointing stability within +/- 30 nano-radians has been demonstrated
for a prototype mirror assembly

* The internal temperature set point is slightly higher than maximum room temperature

-a 15 W resistor provides adequate heat
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Single crystalline Si mirrors are supported on a kinematic mount

» Spherical curvature is manually adjusted to <10 nm (P-V) in front of an interferometer
- Each mirror is bent by about 150 nm (P-V)

» Aspheric curvature is limited to +/- 2 nm (P-V) at fabrication, and limited to this level during

coating and installation

Mirror is supported at 6 points of contact

Mirror bending mechanism
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Curvature contributions were calculated during design, and verified
during final assembly

» Analysis of a mounted HOMS mirror,
Included all constraints & holding forces
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* Mirror coatings are described in a companion paper by Regina Soufli
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HOMS mirror figure does not vary significantly with time,
temperature, & transportation

* Figure stability measured after bending
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- sphere varies by 10 nm/°C
- aspheric component is stable
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- measured on Friday
- transported 60 miles

 Surface figure change before & after transport:

- re-measured following Tuesday

This measurement was for an glass
prototype with poor figure
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Figure is measured by stitching three files from our 12’ Zygo Mark Il

* Reference flat calibration and low noise are

» Stitched by matching slopes & average - )
verified by overlap of aspheric component

value of overlap regions
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» Zeiss & LLNL figure measurements agree within +/-1 nm
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LLNL metrology data on SOMS and HOMS mirrors were used to predict LCLS

coherent wave-front propagation and focal spot structure

« Scalar diffraction model was employed
» The same methodology was used to select order of SOMS and HOMS elements for optimum

performance
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A. Barty, R. Soufli, T. McCarville, S. L. Baker, M. J. Pivovaroff, P. Stefan, and R. Bionta, “Predicting the coherent X-ray
wavefront focal properties at the Linac Coherence Light Source (LCLS) X-ray free electron laser”, Optics Express 17,

15508-15519 (2009).
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Summary

« HOMS mirror figure and pointing requirements presented “high risk” challenges

- The design evolved significantly as a result of prototype testing
- Testing required state of the art metrology methods

* Three more HOMS mirrors are presently being mounted and installed in vacuum
tanks
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Lessons learned from pointing stability measurements

. Air temperature fluctuations cause “rapid” (< 1 min.) Rotation error without temperature control
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Geometry for calibrating transmission flat horizontal axis
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